MINIMAL SURFACES IN S³ AND YAU'S CONJECTURE

JAIGYOUNG CHOE

ABSTRACT. We list some known facts and open problems about minimal surfaces in \mathbb{S}^3 . And we sketch a proof of Yau's conjecture for Lawson's minimal surfaces and Karcher-Pinkall-Sterling's minimal surfaces.

1. MINIMAL SURFACES IN \mathbb{S}^3

The catenoid, the helicoid, Scherk's surfaces, and some triply periodic minimal surfaces had been the only complete embedded minimal surfaces known to exist in \mathbb{R}^3 until Costa and Hoffman-Meeks constructed minimal surfaces of arbitrary genus in 1980's. In the three-dimensional sphere \mathbb{S}^3 Lawson [L1] constructed compact embedded minimal surfaces of arbitrary genus, and Karcher-Pinkall-Sterling [KPS] added some more examples. Both in \mathbb{R}^3 and in \mathbb{S}^3 , a paucity of examples has been a main obstacle to the study of embedded minimal surfaces. Still, we know some a priori properties of compact minimal surfaces in \mathbb{S}^3 as follows.

- (1) An immersed minimal sphere in \mathbb{S}^3 is totally geodesic. (Almgren)
- (2) The center of gravity of a compact minimal submanifold of \mathbb{S}^n is at the origin.
- (3) Two minimal hypersurfaces of \mathbb{S}^n must intersect each other. (Frankel [F])
- (4) For each integer g there is a compact embedded minimal surface of genus g in S³. (Lawson [L1])
- (5) In S³ there exist compact embedded minimal surfaces of genus 3, 5, 6, 7, 11, 17, 19, 73, and 601. (Karcher-Pinkall-Sterling [KPS])
- (6) To each complete minimal surface in S³ there is a complete locally isometric surface of constant mean curvature in R³. (Lawson [L1])
- (7) Embedded minimal surfaces in \mathbb{S}^3 cannot have knotted handles. (Lawson [L2])
- (8) If a compact branched minimal surface and a great circle in S³ are disjoint, then they are linked. (Solomon [S])
- (9) The space of compact embedded minimal surfaces in S³ is compact in C^k topology. (Choi-Schoen [ChS])
- (10) The Morse index of compact minimal surfaces in \mathbb{S}^3 is 1 for the great sphere, 5 for the Clifford torus $\mathbb{S}^1(1/\sqrt{2}) \times \mathbb{S}^1(1/\sqrt{2})$, and higher for the others. (Urbano [U])

J. CHOE

- (11) If the boundary of a compact immersed orientable and stable minimal hypersurface Σ in \mathbb{S}^n lies in a great sphere \mathbb{S}^{n-1} , then $\Sigma \subset \mathbb{S}^{n-1}$. (Ros [R])
- (12) If the boundary of a compact immersed orientable minimal hypersurface Σ in \mathbb{S}^n lies in a great sphere \mathbb{S}^{n-1} , then $\operatorname{Vol}(\Sigma) \geq \frac{1}{2}\operatorname{Vol}(\mathbb{S}^{n-1})$, with equality only if Σ is a hemisphere. (Ros [R])
- (13) The only compact embedded orientable minimal surface in \mathbb{S}^3 that bounds a great circle is the hemisphere. (Hardt-Simon [HS])
- (14) If a compact embedded orientable minimal surface Σ in \mathbb{S}^3 bounds two orthogonally intersecting great circles, then Σ is a half of the Clifford torus. (Hardt-Rosenberg [HR])
- (15) In \mathbb{S}^n any great sphere divides a compact embedded minimal hypersurface into two connected pieces. (Ros [R])
- (16) The Gauss map of a minimal surface $\Sigma \subset \mathbb{S}^3$ gives a branched minimal surface Σ^* in \mathbb{S}^3 . Moreover, $\Sigma^{**} = \Sigma$. (Lawson [L1])
- (17) If Σ is a compact embedded minimal torus in \mathbb{S}^3 , then its Gauss image Σ^* is also embedded. (Ros [R])
- (18) For each conformal structure on a compact surface, there exists at most one metric admitting a minimal immersion into \mathbb{S}^n on which the first eigenvalue of the Laplacian equals two. (Montiel-Ros [MR])
- (19) The only minimal torus in S³ on which the first eigenvalue of the Laplacian equals two is the Clifford torus. (Montiel-Ros [MR])

Now let's consider some open problems and conjectures for minimal surfaces in \mathbb{S}^n :

- Is there a complete immersed minimal surface in S³ which is disjoint from a great sphere S²? This is an S³-version of Calabi's question which was solved affirmatively by Nadirashvili [N].
- (2) For any given integer g there are only finitely many noncongruent minimal surfaces of genus g in S³.
- (3) (Lawson's conjecture) The only embedded minimal torus in \mathbb{S}^3 is the Clifford torus. Combining with (2), one may even conjecture that the only compact embedded minimal surfaces are the surfaces $\xi_{m,k}$ constructed by Lawson in [L1].
- (4) (Yau's conjecture [Y]) The first eigenvalue of the Laplacian on a compact embedded minimal hypersurface Σ^n in \mathbb{S}^{n+1} is equal to n.

Let $x_1, ..., x_m$ be the rectangular coordinates of \mathbb{R}^m and let $X := (x_1, ..., x_m)$. Given a submanifold M of \mathbb{R}^n , it is well known that

$$\Delta_M X = \vec{H},$$

where \vec{H} is the mean curvature vector of M. Therefore $x_1, ..., x_m$ are harmonic functions on a minimal submanifold $\Sigma \subset \mathbb{R}^m$. If Σ^n is minimal in \mathbb{S}^{m-1} , then the

cone $O * \Sigma$ is also minimal in \mathbb{R}^m . Therefore $\Delta_{\Sigma} X$ must be perpendicular to \mathbb{S}^{m-1} and hence $\Delta_{\Sigma} X$ is parallel to X. Then it is not difficult to show that

$$\Delta_{\Sigma} X + nX = 0.$$

Therefore $x_1, ..., x_m$ are eigenfunctions of Δ with eigenvalue *n* on the *n*-dimensional minimal submanifold Σ of \mathbb{S}^{m-1} .

Thus it was natural for Yau to propose his conjecture as above. Yau's conjecture does not concern minimal surfaces with nonempty self intersection and minimal surfaces of high codimension because a minimal surface of revolution of large area in \mathbb{S}^3 and the Veronese surface in \mathbb{S}^4 have the first eigenvalue much smaller than two.

It may have been just out of curiosity that Yau made his conjecture. But Montiel-Ros [MR] showed that Yau's conjecture has a geometric implication: If Yau's conjecture is true, then the Clifford torus is the only embedded minimal torus in \mathbb{S}^3 , i.e., Lawson's conjecture is true as well. It should be mentioned that Choi-Wang [CW] proved that the first eigenvalue on Σ^n is at least n/2.

There is a well-known theorem by Courant that the first eigenfunction of Δ on Σ has *two* nodal domains. In this regard it is very interesting to note that a compact embedded minimal surface in \mathbb{S}^3 has *two-piece property*: Ros [R] proved that any great sphere in \mathbb{S}^3 divides a compact embedded minimal surface Σ into two connected pieces. However, if Yau's conjecture is true, then Ros's two-piece property follows from Courant's theorem. Indeed, if 2 is the first eigenvalue of Δ , then Courant's nodal theorem for the linear function $\phi = a_1x_1 + \ldots + a_4x_4$ with $\phi|_{\mathbb{S}^2} = 0$ implies the two-piece property.

Therefore, now that the two-piece property holds, one might presume that Yau's conjecture should be true. As a matter of fact, the author and M. Soret [CS] found that by using Courant's nodal theorem and Ros's two piece property one can prove Yau's conjecture for minimal surfaces in \mathbb{S}^3 which are sufficiently symmetric (as much symmetric as Lawson's surfaces and Karcher-Pinkall-Sterling's surfaces).

2. YAU'S CONJECTURE

In this section we briefly outline the arguments of our paper [CS].

Lemma 1. If the boundary of a compact immersed orientable and stable minimal hypersurface Σ^n in \mathbb{S}^{n+1} lies in a great sphere, then Σ is totally geodesic.

Proof. See Lemma 1 of [CS].

Theorem 1. Any great sphere in \mathbb{S}^{n+1} divides a compact embedded minimal hypersurface Σ of \mathbb{S}^{n+1} into two connected pieces.

Proof. See Theorem 1 of [CS].

J. CHOE

Lemma 2. Let G be a group of reflections in \mathbb{S}^3 . Assume that a minimal surface $\Sigma \subset \mathbb{S}^3$ is invariant under G. If the first eigenvalue of Δ on Σ is less than 2, then the first eigenfunction must be invariant under G.

Proof. (*Sketch*) Let $\sigma \in G$ be the reflection across a great sphere Π in \mathbb{S}^3 and let ϕ be an eigenfunction on Σ corresponding to the first eigenvalue λ_1 . Note that $\phi \circ \sigma$ is again an eigenfunction with eigenvalue λ_1 . Consider

$$\psi(x) := \phi(x) - \phi \circ \sigma(x).$$

If ψ is the null function then ϕ is invariant under σ . If $\psi \neq 0$ then ψ itself is an eigenfunction with eigenvalue λ_1 . Furthermore its nodal set contains $\Sigma \cap \Pi$. But Courant's nodal theorem implies that ψ vanishes only on $\Sigma \cap \Pi$. Let D_1, D_2 be the components of $\Sigma \setminus \Pi$ such that ψ is positive on D_1 and negative on D_2 . By Ros's two-piece property D_1, D_2 are each connected. One can find a linear function of \mathbb{R}^4 $\xi = a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4$ that vanishes on Π and is positive on D_1 . Clearly ξ is orthogonal to ψ on Σ . But ψ and ξ have the same sign on $D_1 \cup D_2$, which contradicts the orthogonality of ψ and ξ . Therefore ψ must vanish on Σ . This completes the proof as σ is an arbitrary element of G.

Theorem 2. Let Σ be a minimal surface in \mathbb{S}^3 which is invariant under a group G of reflections. Suppose that the fundamental domain of G in \mathbb{S}^3 is a tetrahedron T. If the fundamental patch $S = \Sigma \cap T$ is simply connected and has four edges, then the first eigenvalue of the Laplacian on Σ equals 2.

Proof. Suppose $\lambda_1 < 2$. Let ϕ be an eigenfunction with eigenvalue λ_1 on Σ and $N \subset \Sigma$ the nodal set of ϕ . From Lemma 2 it follows that $S \setminus N$ has at least two connected components. Since S is simply connected one can find a face F of T and a component D of $S \setminus N$ such that ∂D is disjoint from F. Let Π be the great sphere containing F and let \hat{D} be the mirror image of D across Π . Denote by D_1, D_2, D_3 the components of $\Sigma \setminus N$ containing D, \hat{D} and intersecting Π , respectively. We claim that D_1, D_2, D_3 are all distinct. D_2 is the mirror image of D_1 and D_3 is nonempty and symmetric with respect to Π . See [CS] for the details. Therefore ϕ has at least three nodal domains, which contradicts Courant's nodal theorem. Thus $\lambda_1 = 2$.

Lemma 3. Lawson's minimal surfaces $\xi_{m,k}$ can also be constructed in the same way as Karcher-Pinkall-Sterling's surfaces are constructed.

Proof. See Section 2 of [CS].

Corollary 1. The first eigenvalue of the Laplacian on Lawson's embedded minimal surfaces $\xi_{m,k}$ and Karcher-Pinkall-Sterling's minimal surfaces in \mathbb{S}^3 is equal to 2.

Theorem 3. Let Σ be a compact embedded minimal surface in S^3 which is invariant under a group or reflections, and let $D \subset \Sigma$ be a fundamental patch in a tetrahedron of the tessellation. If D is simply connected and has at most five edges, then $\lambda_1(\Sigma) = 2$.

Proof. See Theorem 3 of [CS].

Remark. If the fundamental patch D has six edges, λ_1 may still equal two in case the genus of the minimal surface is sufficiently small. See Section 6 of [CS] for the details.

References

- $[\mathrm{CS}] \qquad \text{J. Choe \& M. Soret, First eigenvalue of symmetric minimal surfaces in \mathbb{S}^3, preprint.}$
- [ChS] H. Choi & R. Schoen, The space of minimal embeddings of a surface into a threedimensional manifold of positive Ricci curvature, Invent. Math. 81 (1985), 387-394.
- [CW] H. Choi & A.-N Wang, A first eigenvalue estimate for minimal hypersurfaces, J. Diff. Geom. 18 (1983), 559-562.
- [F] T. Frankel, On the fundamental group of a compact minimal submanifold, Ann. of Math. 83 (1966), 68-73.
- [HR] R. Hardt & H. Rosenberg, Open book structures and unicity of minimal submanifolds, Ann. Inst. Fourier, Grenoble 40 (1990), 701-708.
- [HS] R. Hardt & L. Simon, Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. 110 (19), 439-486.
- [KPS] H. Karcher, Pinkall & Sterling, New minimal surfaces in S³, J. Diff. Geom. 28 (1988), 169-185.
- [L1] H.B. Lawson, Complete minimal surfaces in \mathbb{S}^3 , Ann. Math. **92**(1970), 335-374.
- [L2] H.B. Lawson, The unknottedness of minimal embeddings, Invent. Math. 11(1970), 183-187.
- [MR] S. Montiel & A. Ros, Minimal immersions of surfaces by the first eigenfunctions and conformal area, Invent Math. 83(1985), 153-166.
- [N] N. Nadirashvili, Hadamard's and Calabi-Yau's conjectures on negatively curved and minimal surfaces, Invent. Math. 126(1996), 457-465.
- [R] A. Ros, A two-piece property for compact minimal surfaces in a three-sphere, Indiana Univ. Math. J. 44 (1995), 841-849.
- [S] B. Solomon, Harmonic maps to spheres, J. Differential Geom. 21, 151-162.
- F. Urbano, Minimal surfaces with low index in the three-dimensional sphere, Proc. Amer. Math. Soc. 108 (1990), 988-992.
- [Y] S.-T. Yau, Problem section, Seminar on differential geometry, Ann. Math. Stud. 102 Princeton University Press (1982), 669-706.

JAIGYOUNG CHOE: DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL, 151-742, KOREA