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Abstract. We list some known facts and open problems about minimal sur-

faces in S3. And we sketch a proof of Yau’s conjecture for Lawson’s minimal

surfaces and Karcher-Pinkall-Sterling’s minimal surfaces.

1. Minimal Surfaces in S3

The catenoid, the helicoid, Scherk’s surfaces, and some triply periodic minimal
surfaces had been the only complete embedded minimal surfaces known to exist in
R3 until Costa and Hoffman-Meeks constructed minimal surfaces of arbitrary genus
in 1980’s. In the three-dimensional sphere S3 Lawson [L1] constructed compact
embedded minimal surfaces of arbitrary genus, and Karcher-Pinkall-Sterling [KPS]
added some more examples. Both in R3 and in S3, a paucity of examples has been
a main obstacle to the study of embedded minimal surfaces. Still, we know some a
priori properties of compact minimal surfaces in S3 as follows.

(1) An immersed minimal sphere in S3 is totally geodesic. (Almgren)
(2) The center of gravity of a compact minimal submanifold of Sn is at the

origin.
(3) Two minimal hypersurfaces of Sn must intersect each other. (Frankel [F])
(4) For each integer g there is a compact embedded minimal surface of genus

g in S3. (Lawson [L1])
(5) In S3 there exist compact embedded minimal surfaces of genus 3, 5, 6, 7,

11, 17, 19, 73, and 601. (Karcher-Pinkall-Sterling [KPS])
(6) To each complete minimal surface in S3 there is a complete locally isometric

surface of constant mean curvature in R3. (Lawson [L1])
(7) Embedded minimal surfaces in S3 cannot have knotted handles. (Lawson

[L2])
(8) If a compact branched minimal surface and a great circle in S3 are disjoint,

then they are linked. (Solomon [S])
(9) The space of compact embedded minimal surfaces in S3 is compact in Ck

topology. (Choi-Schoen [ChS])
(10) The Morse index of compact minimal surfaces in S3 is 1 for the great sphere,

5 for the Clifford torus S1(1/
√

2) × S1(1/
√

2), and higher for the others.
(Urbano [U])
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(11) If the boundary of a compact immersed orientable and stable minimal hy-
persurface Σ in Sn lies in a great sphere Sn−1, then Σ ⊂ Sn−1. (Ros [R])

(12) If the boundary of a compact immersed orientable minimal hypersurface Σ
in Sn lies in a great sphere Sn−1, then Vol(Σ) ≥ 1

2Vol(Sn−1), with equality
only if Σ is a hemisphere. (Ros [R])

(13) The only compact embedded orientable minimal surface in S3 that bounds
a great circle is the hemisphere. (Hardt-Simon [HS])

(14) If a compact embedded orientable minimal surface Σ in S3 bounds two
orthogonally intersecting great circles, then Σ is a half of the Clifford torus.
(Hardt-Rosenberg [HR])

(15) In Sn any great sphere divides a compact embedded minimal hypersurface
into two connected pieces. (Ros [R])

(16) The Gauss map of a minimal surface Σ ⊂ S3 gives a branched minimal
surface Σ∗ in S3. Moreover, Σ∗∗ = Σ. (Lawson [L1])

(17) If Σ is a compact embedded minimal torus in S3, then its Gauss image Σ∗

is also embedded. (Ros [R])
(18) For each conformal structure on a compact surface, there exists at most one

metric admitting a minimal immersion into Sn on which the first eigenvalue
of the Laplacian equals two. (Montiel-Ros [MR])

(19) The only minimal torus in S3 on which the first eigenvalue of the Laplacian
equals two is the Clifford torus. (Montiel-Ros [MR])

Now let’s consider some open problems and conjectures for minimal surfaces in Sn:

(1) Is there a complete immersed minimal surface in S3 which is disjoint from
a great sphere S2? This is an S3-version of Calabi’s question which was
solved affirmatively by Nadirashvili [N].

(2) For any given integer g there are only finitely many noncongruent minimal
surfaces of genus g in S3.

(3) (Lawson’s conjecture) The only embedded minimal torus in S3 is the Clif-
ford torus. Combining with (2), one may even conjecture that the only
compact embedded minimal surfaces are the surfaces ξm,k constructed by
Lawson in [L1].

(4) (Yau’s conjecture [Y]) The first eigenvalue of the Laplacian on a compact
embedded minimal hypersurface Σn in Sn+1 is equal to n.

Let x1, ..., xm be the rectangular coordinates of Rm and let X := (x1, ..., xm). Given
a submanifold M of Rn, it is well known that

∆MX = ~H,

where ~H is the mean curvature vector of M . Therefore x1, ..., xm are harmonic
functions on a minimal submanifold Σ ⊂ Rm. If Σn is minimal in Sm−1, then the
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cone O××Σ is also minimal in Rm. Therefore ∆ΣX must be perpendicular to Sm−1

and hence ∆ΣX is parallel to X. Then it is not difficult to show that

∆ΣX + nX = 0.

Therefore x1, ..., xm are eigenfunctions of ∆ with eigenvalue n on the n-dimensional
minimal submanifold Σ of Sm−1.

Thus it was natural for Yau to propose his conjecture as above. Yau’s conjecture
does not concern minimal surfaces with nonempty self intersection and minimal
surfaces of high codimension because a minimal surface of revolution of large area
in S3 and the Veronese surface in S4 have the first eigenvalue much smaller than
two.

It may have been just out of curiosity that Yau made his conjecture. But Montiel-
Ros [MR] showed that Yau’s conjecture has a geometric implication: If Yau’s con-
jecture is true, then the Clifford torus is the only embedded minimal torus in S3,
i.e., Lawson’s conjecture is true as well. It should be mentioned that Choi-Wang
[CW] proved that the first eigenvalue on Σn is at least n/2.

There is a well-known theorem by Courant that the first eigenfunction of ∆
on Σ has two nodal domains. In this regard it is very interesting to note that a
compact embedded minimal surface in S3 has two-piece property : Ros [R] proved
that any great sphere in S3 divides a compact embedded minimal surface Σ into
two connected pieces. However, if Yau’s conjecture is true, then Ros’s two-piece
property follows from Courant’s theorem. Indeed, if 2 is the first eigenvalue of ∆,
then Courant’s nodal theorem for the linear function φ = a1x1 + ... + a4x4 with
φ|S2 = 0 implies the two-piece property.

Therefore, now that the two-piece property holds, one might presume that Yau’s
conjecture should be true. As a matter of fact, the author and M. Soret [CS] found
that by using Courant’s nodal theorem and Ros’s two piece property one can prove
Yau’s conjecture for minimal surfaces in S3 which are sufficiently symmetric (as
much symmetric as Lawson’s surfaces and Karcher-Pinkall-Sterling’s surfaces).

2. Yau’s Conjecture

In this section we briefly outline the arguments of our paper [CS].

Lemma 1. If the boundary of a compact immersed orientable and stable minimal
hypersurface Σn in Sn+1 lies in a great sphere, then Σ is totally geodesic.

Proof. See Lemma 1 of [CS]. ¤

Theorem 1. Any great sphere in Sn+1 divides a compact embedded minimal hy-
persurface Σ of Sn+1 into two connected pieces.

Proof. See Theorem 1 of [CS]. ¤
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Lemma 2. Let G be a group of reflections in S3. Assume that a minimal surface
Σ ⊂ S3 is invariant under G. If the first eigenvalue of ∆ on Σ is less than 2, then
the first eigenfunction must be invariant under G.

Proof. (Sketch) Let σ ∈ G be the reflection across a great sphere Π in S3 and let φ

be an eigenfunction on Σ corresponding to the first eigenvalue λ1. Note that φ ◦ σ

is again an eigenfunction with eigenvalue λ1. Consider

ψ(x) := φ(x)− φ ◦ σ(x).

If ψ is the null function then φ is invariant under σ. If ψ 6≡ 0 then ψ itself is an
eigenfunction with eigenvalue λ1. Furthermore its nodal set contains Σ ∩ Π. But
Courant’s nodal theorem implies that ψ vanishes only on Σ∩Π. Let D1, D2 be the
components of Σ \ Π such that ψ is positive on D1 and negative on D2. By Ros’s
two-piece property D1, D2 are each connected. One can find a linear function of R4

ξ = a1x1 + a2x2 + a3x3 + a4x4 that vanishes on Π and is positive on D1. Clearly
ξ is orthogonal to ψ on Σ. But ψ and ξ have the same sign on D1 ∪ D2, which
contradicts the orthogonality of ψ and ξ. Therefore ψ must vanish on Σ. This
completes the proof as σ is an arbitrary element of G. ¤

Theorem 2. Let Σ be a minimal surface in S3 which is invariant under a group G

of reflections. Suppose that the fundamental domain of G in S3 is a tetrahedron T .
If the fundamental patch S = Σ ∩ T is simply connected and has four edges, then
the first eigenvalue of the Laplacian on Σ equals 2.

Proof. Suppose λ1 < 2. Let φ be an eigenfunction with eigenvalue λ1 on Σ and
N ⊂ Σ the nodal set of φ. From Lemma 2 it follows that S \ N has at least two
connected components. Since S is simply connected one can find a face F of T and
a component D of S \N such that ∂D is disjoint from F . Let Π be the great sphere
containing F and let D̂ be the mirror image of D across Π. Denote by D1, D2, D3

the components of Σ \ N containing D, D̂ and intersecting Π, respectively. We
claim that D1, D2, D3 are all distinct. D2 is the mirror image of D1 and D3 is
nonempty and symmetric with respect to Π. See [CS] for the details. Therefore
φ has at least three nodal domains, which contradicts Courant’s nodal theorem.
Thus λ1 = 2. ¤

Lemma 3. Lawson’s minimal surfaces ξm,k can also be constructed in the same
way as Karcher-Pinkall-Sterling’s surfaces are constructed.

Proof. See Section 2 of [CS]. ¤

Corollary 1. The first eigenvalue of the Laplacian on Lawson’s embedded minimal
surfaces ξm,k and Karcher-Pinkall-Sterling’s minimal surfaces in S3 is equal to 2.

Theorem 3. Let Σ be a compact embedded minimal surface in S3 which is invariant
under a group or reflections, and let D ⊂ Σ be a fundamental patch in a tetrahedron
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of the tessellation. If D is simply connected and has at most five edges, then λ1(Σ) =
2.

Proof. See Theorem 3 of [CS]. ¤

Remark . If the fundamental patch D has six edges, λ1 may still equal two in
case the genus of the minimal surface is sufficiently small. See Section 6 of [CS] for
the details.
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